934 research outputs found

    Microstates of the cortical brain-heart axis

    Get PDF
    Electroencephalographic (EEG) microstates are brain states with quasi-stable scalp topography. Whether such states extend to the body level, that is, the peripheral autonomic nerves, remains unknown. We hypothesized that microstates extend at the brain-heart axis level as a functional state of the central autonomic network. Thus, we combined the EEG and heartbeat dynamics series to estimate the directional information transfer originating in the cortex targeting the sympathovagal and parasympathetic activity oscillations and vice versa for the afferent functional direction. Data were from two groups of participants: 36 healthy volunteers who were subjected to cognitive workload induced by mental arithmetic, and 26 participants who underwent physical stress induced by a cold pressure test. All participants were healthy at the time of the study. Based on statistical testing and goodness-of-fit evaluations, we demonstrated the existence of microstates of the functional brain-heart axis, with emphasis on the cerebral cortex, since the microstates are derived from EEG. Such nervous-system microstates are spatio-temporal quasi-stable states that exclusively refer to the efferent brain-to-heart direction. We demonstrated brain-heart microstates that could be associated with specific experimental conditions as well as brain-heart microstates that are non-specific to tasks

    An aging evaluation of the bearing performances of glass fiber composite laminate in salt spray fog environment

    Get PDF
    The aim of the present paper is to assess the bearing performance evolution of pinned, glass-composite laminates due to environmental aging in salt-spray fog tests. Glass fibers/epoxy pinned laminates were exposed for up to 60 days in salt-spraying, foggy environmental conditions (according to ASTM B117 standard). In order to evaluate the relationship between mechanical failure mode and joint stability over increasing aging time, different single lap joints, measured by the changing hole diameter (D), laminate width (W) and hole free edge distance (E), were characterized at varying aging steps. Based on this approach, the property-structure relationship of glass-fibers/epoxy laminates was assessed under these critical environmental conditions. Furthermore, an experimental 2D failure map, clustering main failure modes in the plane E/D versus W/D ratios, was generated, and its cluster variation was analyzed at each degree of aging

    Nervous–system–wise Functional Estimation of Directed Brain–Heart Interplay through Microstate Occurrences

    Get PDF
    Background: The quantification of functional brain–heart interplay (BHI) through analysis of the dynamics of the central and autonomic nervous systems provides effective biomarkers for cognitive, emotional, and autonomic state changes. Several computational models have been proposed to estimate BHI, focusing on a single sensor, brain region, or frequency activity. However, no models currently provide a directional estimation of such interplay at the organ level. Objective: This study proposes an analysis framework to estimate BHI that quantifies the directional information flow between whole–brain and heartbeat dynamics. Methods: System–wise directed functional estimation is performed through an ad-hoc symbolic transfer entropy implementation, which leverages on EEG-derived microstate series and on partition of heart rate variability series. The proposed framework is validated on two different experimental datasets: the first investigates the cognitive workload performed through mental arithmetic and the second focuses on an autonomic maneuver using a cold pressor test (CPT). Results: The experimental results highlight a significant bidirectional increase in BHI during cognitive workload with respect to the preceding resting phase and a higher descending interplay during a CPT compared to the preceding rest and following recovery phases. These changes are not detected by the intrinsic self entropy of isolated cortical and heartbeat dynamics. Conclusion: This study corroborates the literature on the BHI phenomenon under these experimental conditions and the new perspective provides novel insights from an organ–level viewpoint. Significance: A system–wise perspective of the BHI phenomenon may provide new insights into physiological and pathological processes that may not be completely understood at a lower level/scale of analysis

    Inhomogeneous point-process entropy: an instantaneous measure of complexity in discrete systems

    Get PDF
    Measures of entropy have been widely used to characterize complexity, particularly in physiological dynamical systems modeled in discrete time. Current approaches associate these measures to finite single values within an observation window, thus not being able to characterize the system evolution at each moment in time. Here, we propose a new definition of approximate and sample entropy based on the inhomogeneous point-process theory. The discrete time series is modeled through probability density functions, which characterize and predict the time until the next event occurs as a function of the past history. Laguerre expansions of the Wiener-Volterra autoregressive terms account for the long-term nonlinear information. As the proposed measures of entropy are instantaneously defined through probability functions, the novel indices are able to provide instantaneous tracking of the system complexity. The new measures are tested on synthetic data, as well as on real data gathered from heartbeat dynamics of healthy subjects and patients with cardiac heart failure and gait recordings from short walks of young and elderly subjects. Results show that instantaneous complexity is able to effectively track the system dynamics and is not affected by statistical noise properties

    Cluster permutation analysis for EEG series based on non-parametric Wilcoxon–Mann–Whitney statistical tests

    Get PDF
    Cluster-based permutation tests are widely used in neuroscience studies for the analysis of high-dimensional electroencephalography (EEG) and event-related potential (ERP) data as it may address the multiple comparison problem without reducing the statistical power. However, classical cluster-based permutation analysis relies on parametric t-tests, whose assumptions may not be verified in case of non-normality of the data distribution and alternative options may be considered. To overcome this limitation, here we present a new software for a cluster permutation analysis for EEG series based on non-parametric Wilcoxon–Mann–Whitney tests. We tested both t-test and non-parametric Wilcoxon implementations in two independent datasets of ERPs and EEG spectral data: while t-test-based and non-parametric Wilcoxon-based cluster analyses showed similar results in case of ERP data, the t-test implementation was not able to find clustered effects in case of spectral data. We encourage the use of non-parametric statistics for a cluster permutation analysis of EEG data, and we provide a publicly available software for this computation

    Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    Get PDF
    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3?25?seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2?N and 6?N, and two levels of velocity, 9.4?mm/s and 65?mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension

    Estimation of instantaneous complex dynamics through Lyapunov exponents: a study on heartbeat dynamics

    Get PDF
    Measures of nonlinearity and complexity, and in particular the study of Lyapunov exponents, have been increasingly used to characterize dynamical properties of a wide range of biological nonlinear systems, including cardiovascular control. In this work, we present a novel methodology able to effectively estimate the Lyapunov spectrum of a series of stochastic events in an instantaneous fashion. The paradigm relies on a novel point-process high-order nonlinear model of the event series dynamics. The long-term information is taken into account by expanding the linear, quadratic, and cubic Wiener-Volterra kernels with the orthonormal Laguerre basis functions. Applications to synthetic data such as the H�non map and R�ssler attractor, as well as two experimental heartbeat interval datasets (i.e., healthy subjects undergoing postural changes and patients with severe cardiac heart failure), focus on estimation and tracking of the Instantaneous Dominant Lyapunov Exponent (IDLE). The novel cardiovascular assessment demonstrates that our method is able to effectively and instantaneously track the nonlinear autonomic control dynamics, allowing for complexity variability estimations

    fNIRS complexity analysis for the assessment of motor imagery and mental arithmetic tasks

    Get PDF
    Conventional methods for analyzing functional near-infrared spectroscopy (fNIRS) signals primarily focus on characterizing linear dynamics of the underlying metabolic processes. Nevertheless, linear analysis may underrepresent the true physiological processes that fully characterizes the complex and nonlinear metabolic activity sustaining brain function. Although there have been recent attempts to characterize nonlinearities in fNIRS signals in various experimental protocols, to our knowledge there has yet to be a study that evaluates the utility of complex characterizations of fNIRS in comparison to standard methods, such as the mean value of hemoglobin. Thus, the aim of this study was to investigate the entropy of hemoglobin concentration time series obtained from fNIRS signals and perform a comparitive analysis with standard mean hemoglobin analysis of functional activation. Publicly available data from 29 subjects performing motor imagery and mental arithmetics tasks were exploited for the purpose of this study. The experimental results show that entropy analysis on fNIRS signals may potentially uncover meaningful activation areas that enrich and complement the set identified through a traditional linear analysis

    Mechanical behavior of carbon/flax hybrid composites for structural applications

    Get PDF
    In this work, the influence of an unidirectional carbon fabric layer on the mechanical performances of bidirectional flax fabric/epoxy composites used for structural applications was studied. Two different bidirectional flax fabrics were used to produce flax fabric reinforced plastic (FFRP) laminates by a vacuum bagging process: one is normally used to make curtains; the other, heavier and more expensive than the previous one, is usually used as reinforcement in composite structures. In order to realize hybrid structures starting from FFRP, an unidirectional UHM carbon fabric was used to replace a bidirectional flax fabric. Tensile and three-point bending tests were performed to evaluate the mechanical properties of the laminates investigated (both FFRP and hybrids). Furthermore, the mechanical behavior of the different bidirectional flax fabrics was analyzed by carrying out tensile tests. The experimental tests showed that the structures reinforced with flax fabrics, normally used to make curtains, present better flexural properties than that of others while, in tensile configuration, these last show higher modulus and strength. Moreover, both FFRP laminates show low mechanical properties, which do not allow their use in structural applications while the presence of one external layer of unidirectional carbon involves remarkable increase in their properties. According to this study, the hybrid composites realized could be used in several structural applications (i.e., nautical and automotive)
    • …
    corecore